Abstract

The HXeY⋯H2O complexes (Y = Cl, Br, and I) are studied theoretically and experimentally. The calculations at the CCSD(T)/def2-TZVPPD level of theory predict two stable structures for Y = Cl and Br and one structure for Y = I, with interaction energies up to about -7 kcal mol(-1). In the experiments, we have identified several infrared absorption bands originating from the H-Xe stretching mode of these complexes in a xenon matrix. The monomer-to-complex frequency shifts of this mode are up to +82 cm(-1) (Y = Cl), +101 cm(-1) (Y = Br), and +138 cm(-1) (Y = I), i.e., the shift is smaller for more strongly bound molecules. Based on the agreement of the experimental and theoretical results, the observed bands are assigned to the most stable planar structure with an O-H⋯Y-Xe hydrogen bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.