Abstract

This work presents a new approach for the analysis of small molecules with direct negative ion laser desorption/ionization (LDI) on graphene flakes. A series of matrix interference-free mass spectra were obtained for the analysis of a wide range of small molecules including peptides, amino acids, fatty acids, as well as nucleosides and nucleotides. The mixture of analytes and graphene flakes suspension were directly pipetted onto a sample plate for LDI-time-of-flight mass spectrometry (TOFMS) analysis. Deprotonated monomeric species [M-H](-) ions were homogeneously obtained on uniform graphene flakes film when negative ion mode was applied. In positive ion mode, the analytes were detected in form of multiple adduct ions such as sodium adduct [M+Na](+), potassium adduct [M+K](+), double sodium adduct [M+2Na-H](+), double potassium adduct [M+2K-H](+), as well as sodium and potassium mixed adduct [M+Na+K-H](+). Better sensitivity and reproducibility were achieved in negative ion mode compared to positive ion mode. It is believed that the new method of matrix interference-free negative ion LDI on graphene flakes may be expanded for LDI-MS analysis of various small molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.