Abstract

Matrix integrals used in random matrix theory for the study of eigenvalues of Hermitian ensembles have been shown to provide τ-functions for several hierarchies of integrable equations. In this article, we extend this relation by showing that such integrals can also provide τ-functions for the discrete KP hierarchy and a coupled version of the same hierarchy obtained through the process of Pfaffianization. To do so, we consider the first equation of the discrete KP hierarchy, the Hirota–Miwa equation. We write the Wronskian determinant solutions to the Hirota–Miwa equation and consider a particular form of matrix integrals, which we show is an example of those Wronskian solutions. The argument is then generalized to the whole hierarchy. A similar strategy is used for the Pfaffianized version of the hierarchy except that in that case, the solutions are written in terms of Pfaffians rather than determinants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.