Abstract

Insertion and deletion are considered to be the basic operations in Biology, more specifically in DNA processing and RNA editing. Based on these evolutionary transformations, a computing model has been formulated in formal language theory known as insertion-deletion systems. Since the biological macromolecules can be viewed as symbols, the gene sequences can be represented as strings. This suggests that the molecular representations can be theoretically analyzed if a biologically inspired computing model recognizes various bio-molecular structures like pseudoknot, hairpin, stem and loop, cloverleaf and dumbbell. In this paper, we introduce a simple grammar system that encompasses many bio-molecular structures including the above mentioned structures. This new grammar system is based on insertion-deletion and matrix grammar systems and is called Matrix insertion-deletion grammars. Finally, we discuss how the ambiguity levels defined for insertion-deletion grammar systems can be realized in bio-molecular structures, thus the ambiguity issues in gene sequences can be studied in terms of grammar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call