Abstract

Abstract Since Li and Yau obtained the gradient estimate for the heat equation, related estimates have been extensively studied. With additional curvature assumptions, matrix estimates that generalize such estimates have been discovered for various time-dependent settings, including the heat equation on a Kähler manifold, Ricci flow, Kähler–Ricci flow, and mean curvature flow, to name a few. As an elliptic analogue, Colding proved a sharp gradient estimate for the Green function on a manifold with nonnegative Ricci curvature. In this article, we prove a related matrix inequality on manifolds with suitable curvature and volume growth assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.