Abstract

Matrix-induced autologous chondrocyte implantation is a 2-stage surgical procedure used to treat symptomatic, full-thickness chondral lesions of the knee. This third-generation autologous chondrocyte implantation (ACI) technique improves on the limitations of previous methods, including the risk of uneven chondrocyte distribution at the time of implantation and graft hypertrophy. Given the compliant properties of the scaffold, the graft can be easily shaped to treat irregular chondral defects and applied to articular surfaces with multiplanar geometry (e.g., patella, trochlea). Although ACI techniques are ideally suited to treat chondral surface defects, the ACI “sandwich” technique can be used to treat large osteochondral defects with significant bone loss (>8 mm). Historically, this procedure uses autologous bone graft to replace areas of osseous deficiency along with 2 type I/III collagen bilayer membranes to securely contain the cultured chondrocytes within the defect. We present an analogous technique for the treatment of osteochondral lesions of the femoral trochlea using a single matrix-induced ACI scaffold and autologous bone grafting for a segmental osseous defect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call