Abstract

Volcanic eruptions necessitate precise monitoring of magma pressure and inflation for improved forecasting. Understanding deep magma storage is crucial for hazard assessment, yet imaging these systems is challenging due to complex heterogeneities that disrupt standard seismic migration techniques. Here we map the magmatic and hydrothermal system of the La Soufrière volcano in Guadeloupe by analyzing seismic noise data from a sparse geophone array under a matrix formalism. Seismic noise interferometry provides a reflection matrix containing the signature of echoes from deep heterogeneities. Using wave correlations resistant to disorder, matrix imaging successfully unscrambles wave distortions, revealing La Soufrière’s internal structure down to 10 km with 100 m resolution. This method surpasses the diffraction limit imposed by geophone array aperture, providing crucial data for modeling and high-resolution monitoring. We see matrix imaging as a revolutionary tool for understanding volcanic systems and enhancing observatories’ abilities to monitor dynamics and forecast eruptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.