Abstract

Insulin-like growth factor 1 (IGF-1), the most abundant growth factor in the bone matrix, regulates bone mass in adulthood. We report that IGF-1 released from bone matrix stimulates osteoblastic differentiation of mesenchymal stem cell (MSCs) by activation of mTOR during bone remodeling. Mice knockout of IGF-1 receptor (Igf1r) in the preosteoblastic cells exhibited low bone mass and reduced mineral deposition rates. The MSCs recruited to the bone surface were unable to differentiate into osteoblasts. In age-related osteoporosis in humans, we found that marrow IGF-1 levels were 40% lower than controls. Similarly, the levels of IGF-1 in the bone matrix and marrow of aged rats were also decreased and directly correlated with the age-related decrease in bone mass. Notably, injection of IGF-1 with IGF binding protein 3 (IGFBP3), not IGF-1 alone, increased the level of IGF-1 in the bone matrix and stimulated new bone formation in old rats. Thus, IGF-1 released during bone resorption from bone matrix activates mTOR to induce osteoblast differentiation of MSCs in maintaining bone micro-architecture and mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call