Abstract
Let R be a finite principal ideal ring and m,n,d positive integers. In this paper, we study the matrix graph over R which is the graph whose vertices are m×n matrices over R and two matrices A and B are adjacent if and only if 0<rank(A−B)<d. We show that this graph is a connected vertex transitive graph. The distance, diameter, independence number, clique number and chromatic number of this graph are also determined. This graph can be applied to study MRD codes over R. We obtain that a maximal independent set of the matrix graph is a maximum rank distance (MRD) code and vice versa. Moreover, we show the existence of linear MRD codes over R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.