Abstract

The regulation of matrix gamma-carboxyglutamic acid protein (MGP) expression during the process of lung branching morphogenesis and development was investigated. MGP mRNA expression was determined over an embryonic and postnatal time course and shown to be developmentally regulated. Immunohistochemical analysis revealed increased staining for MGP in peripheral mesenchyme surrounding distal epithelial tubules. Fetal lung explants were used as an in vitro growth model to examine expression and regulation of MGP during branching morphogenesis. MGP mRNA expression over the culture interval mimicked the in vivo time course. Explants cultured in the presence of antibodies against MGP showed gross dilation and reduced terminal lung bud counts, accompanied by changes in MGP, sonic hedgehog, and patched mRNA expression. Similarly, antifibronectin antibody treatment resulted in explant dilation and reduced MGP expression, providing evidence for an interaction with MGP and fibronectin. Conversely, intraluminal microinjection of anti-MGP antibodies had no effect either on explant growth or MGP expression, supporting the hypothesis that MGP exerts its effects through the mesenchyme. Taken together, the results suggest that MGP plays a role in lung growth and development, likely via temporally and spatially specific interactions with other branching morphogenesis-related proteins to influence growth processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.