Abstract
A matrix formulation is presented, which enables us to study the propagation of axis-symmetric beams through a paraxial optical ABCD system containing hard-edged aperture. Numerical calculation results of super-Gaussian beams passing through a multi-aperture-lens system are given to illustrate the advantage of the method. A comparison of the matrix formulation, complex Gaussian expansion and direct numerical integration of the Collins formula is made, where the propagation of apertured Laguerre–Gaussian beams is chosen as an illustrative example. It is shown that the matrix formulation provides satisfactory results in both Fraunhofer and Fresnel regions, and reduces the computational time greatly in comparison with the direct integration. However, this method is suited only to axis-symmetric optical beams and systems. By using the complex Gaussian expansion discrepancies exist in the near zone closer to the aperture, but usually its computational efficiency is higher than the matrix formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.