Abstract

Bone matrix formation and mineralization are two closely related, yet separated processes. Matrix formation occurs first, mineralization is a second step strictly dependent on the dietary intake of calcium and phosphorus (P). However, mineralization is commonly used as diagnostic parameter for bone-related diseases. In this context, bone loss, often characterized as a condition with reduced bone mineral density, represents a major burden for human health, for which increased dietary mineral intake is generally recommended. Using a counterintuitive approach, we use a low-P diet followed by a sufficient-P intake to increase bone volume. We show in zebrafish by histology, qPCR, micro-CT, and enzyme histochemistry that a two-months period of reduced dietary P intake stimulates extensive formation of new bone matrix, associated with the upregulation of key genes required for both bone matrix formation and mineralization. The return to a P-sufficient diet initiates the mineralization of the abundant matrix previously deposited, thus resulting in a striking increase of the mineralized bone volume as proven at the level of the vertebral column, including vertebral bodies and arches. In summary, bone matrix formation is first stimulated with a low-P diet, and its mineralization is later triggered by a sufficient-P dietary intake. In zebrafish, the uncoupling of bone formation and mineralization by alternating low and sufficient dietary P intake significantly increases the bone volume without causing skeletal malformations or ectopic mineralization. A modification of this approach to stimulate bone formation, optimized for mammalian models, can possibly open opportunities to support treatments in patients that suffer from low bone mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.