Abstract

Abstract We give a purely algebraic construction of a cohomological field theory associated with a quasihomogeneous isolated hypersurface singularity W and a subgroup G of the diagonal group of symmetries of W. This theory can be viewed as an analogue of the Gromov–Witten theory for an orbifoldized Landau–Ginzburg model for W/G. The main geometric ingredient for our construction is provided by the moduli of curves with W-structures introduced by Fan, Jarvis and Ruan. We construct certain matrix factorizations on the products of these moduli stacks with affine spaces which play a role similar to that of the virtual fundamental classes in the Gromov–Witten theory. These matrix factorizations are used to produce functors from the categories of equivariant matrix factorizations to the derived categories of coherent sheaves on the Deligne–Mumford moduli stacks of stable curves. The structure maps of our cohomological field theory are then obtained by passing to the induced maps on Hochschild homology. We prove that for simple singularities a specialization of our theory gives the cohomological field theory constructed by Fan, Jarvis and Ruan using analytic tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.