Abstract

Matrix factorization is an important mathematical problem encountered in the context of dictionary learning, recommendation systems, and machine learning. We introduce a decimation scheme that maps it to neural network models of associative memory and provide a detailed theoretical analysis of its performance, showing that decimation is able to factorize extensive-rank matrices and to denoise them efficiently. In the case of binary prior on the signal components, we introduce a decimation algorithm based on a ground-state search of the neural network, which shows performances that match the theoretical prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.