Abstract

In this paper we prove that certain matrix elements of vertex operators of the deformed W A n -algebra satisfy Macdonald's difference equations and form a natural (n + 1)!-dimensional space of solutions. These solutions are the analogues of the Harish-Chandra solutions of the radial parts of the Laplace-Casimir operators on noncompact Riemannian symmetric spaces G/K with prescribed asymptotic behavior. We obtain formulas for analytic continuation of our Harish-Chandra type solutions as a consequence of braiding properties (obtained earlier by Y. Asai, M. Jimbo, T. Miwa, and Y. Pugay) of certain vertex operators of the deformed W A n -algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.