Abstract

The use of antibiotics in agriculture and livestock poses health risks to consumers. Treatments such as High Hydrostatic Pressure (HHP) have been shown to reduce antibiotic and pesticide residues in food. This study aims to investigate the matrix effect on the effectiveness of HHP on hydrochloride tetracycline (HTC) and sulfathiazole (STZ) residues in spiked food matrices. The effect of viscosity, as well as carbohydrate, protein, and fat content on the effectiveness of HHP on antibiotic residues, was investigated. The studied matrices were full-fat and fat-free bovine milk and model food systems consisting of aqueous solutions of sugars, aqueous solutions of proteins, and oil in water emulsions. Model food systems were also used to study the viscosity effect. These systems consisted of aqueous solutions of honey, aqueous solutions of apple puree, and aqueous solutions of glycerol. The HHP processing (580 MPa, 6 min, 25 °C) took place under industrial conditions. For both antibiotics, the concentration of sugars and proteins was found to affect the effectiveness of treatment. The concentration of oils affected treatment efficacy only for HTC. Reduction of antibiotics by HHP was also affected by the type of carbohydrate and the viscosity. In conclusion, the composition and the viscosity of the food matrix exert a variable effect on the studied antibiotic residues reduction by HHP indicating different underlying mechanisms of the interactions between food constituents and antibiotics under the same process conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.