Abstract

In this article, we propose to model the inverse of a given matrix as the state of a proper first order matrix differential equation. The inverse can correspond to a finite value of the independent variable or can be reached as a steady state. In both cases we derive corresponding dynamical systems and establish stability and convergence results. The application of a numerical time marching scheme is then proposed to compute an approximation of the inverse. The study of the underlying schemes can be done by using tools of numerical analysis instead of linear algebra techniques only. With our approach, we recover some known schemes but also introduce new ones. We derive in addition a masked dynamical system for computing sparse inverse approximations. Finally we give numerical results that illustrate the validity of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.