Abstract

Matrix decomposition algorithms (MDAs) are fast direct methods for the solution of systems of linear algebraic equations which arise in the approximation of Poisson’s equation on the unit square using various techniques such as finite difference, spline collocation and spectral methods. The attraction of MDAs is that they employ fast Fourier transforms and require O(N2logN) operations on an N×N uniform partition of the unit square. In this paper, MDAs are formulated for the solution of the finite element Galerkin equations arising when spaces of C0 piecewise polynomials of degree k≥3 are employed. Results of numerical experiments exhibit the expected optimal global convergence rates and superconvergence phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.