Abstract

The processes of matrix cracking and interface debonding were studied using the high sensitivity Moire interferometry technique. The experiments were conducted with continuous steel fiber reinforced cementitious composites subjected to uniaxial tension. The initiation and propagation of cracking and debonding were observed during the tests with the specimens of different fiber-volume ratios. Based on the experiments, the fiber stress, the interface slip, the interface shear stress, and the matrix strain distribution were calculated. It was shown that interfacial frictional shear stresses were not constant either along the whole interface or at different loading levels. The strain localization was observed in the matrix where it was bonded to the fiber. The average contribution of the matrix was greater for the composites with the higher fiber-volume ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.