Abstract
The existing matrix completion methods focus on optimizing the relaxation of rank function such as nuclear norm, Schatten- p norm, etc. They usually need many iterations to converge. Moreover, only the low-rank property of matrices is utilized in most existing models and several methods that incorporate other knowledge are quite time-consuming in practice. To address these issues, we propose a novel non-convex surrogate that can be optimized by closed-form solutions, such that it empirically converges within dozens of iterations. Besides, the optimization is parameter-free and the convergence is proved. Compared with the relaxation of rank, the surrogate is motivated by optimizing an upper-bound of rank. We theoretically validate that it is equivalent to the existing matrix completion models. Besides the low-rank assumption, we intend to exploit the column-wise correlation for matrix completion, and thus an adaptive correlation learning, which is scaling-invariant, is developed. More importantly, after incorporating the correlation learning, the model can be still solved by closed-form solutions such that it still converges fast. Experiments show the effectiveness of the non-convex surrogate and adaptive correlation learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.