Abstract
Noncommutative rational functions, i.e., elements of the universal skew field of fractions of a free algebra, can be defined through evaluations of noncommutative rational expressions on tuples of matrices. This interpretation extends their traditionally important role in the theory of division rings and gives rise to their applications in other areas, from free real algebraic geometry to systems and control theory. If a noncommutative rational function is regular at the origin, it can be described by a linear object, called a realization. In this article we present an extension of the realization theory that is applicable to arbitrary noncommutative rational functions and is well-adapted for studying matrix evaluations.Of special interest are the minimal realizations, which compensate the absence of a canonical form for noncommutative rational functions. The non-minimality of a realization is assessed by obstruction modules associated with it; they enable us to devise an efficient method for obtaining minimal realizations. With them we describe the stable extended domain of a noncommutative rational function and define a numerical invariant that measures its complexity. Using these results we determine concrete size bounds for rational identity testing, construct minimal symmetric realizations and prove an effective local–global principle for linear dependence of noncommutative rational functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.