Abstract

Rapid evaporative ionization mass spectrometry (REIMS) is a highly versatile technique allowing the sampling of a range of biological solid or liquid samples with no sample preparation. The cost of such a direct approach is that certain sample types provide only moderate amounts of chemical information. Here, we introduce a matrix assisted version of the technique (MA-REIMS), where an aerosol of a pure solvent, such as isopropanol, is mixed with the sample aerosol generated by rapid evaporation of the sample, and it is shown to enhance the signal intensity obtained from a REIMS sampling event by over 2 orders of magnitude. Such an increase greatly expands the scope of the technique, while providing additional benefits such as reducing the fouling of the REIMS source and allowing for a simple method of constant introduction of a calibration correction compound for accurate mass measurements. A range of experiments are presented in order to investigate the processes that occur within this modified approach, and applications where such enhancements are critical, such as intrasurgical tissue identification, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.