Abstract

Poly(9,9-dioctylfluorene) (PF8) thin films have been deposited by matrix-assisted pulsed laser evaporation (MAPLE) using a KrF excimer laser. The influence of the laser fluence (50–500 mJ/cm 2) and the nature of the solvent (chloroform, toluene, tetrahydrofuran) on the films properties have been studied. The chemical composition of the deposited films was investigated by Fourier transform infrared (FTIR) spectroscopy and compared with the one of spin coated films. To investigate the effect of the deposition parameters on the optical properties of the films, photoluminescence (PL) measurements were performed. Poor structural and optical properties were observed for films deposited starting from chloroform solutions. When using toluene as solvent, the spectra characteristics improved with increasing laser fluence, while wide PL spectra were observed. The characteristic emission bands of the PF8 polymer were nicely detected for films deposited starting from a tetrahydrofuran (THF) solution. Moreover, in this last case, the PF8 structure is preserved at high laser fluences, too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.