Abstract

Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique was used to deposit films of Poly(9,9-dioctylfluorene) – PFO and Methoxy Ge Triphenylcorrole [Ge(TPC)OCH3]. The PFO was dissolved in different matrices, like chloroform-CHCl3, tetrahydrofuran – THF and toluene with a 0.5 wt % concentration, while Ge(TPC)OCH3 was diluted in THF with a concentration of 0.01 wt %. The frozen targets were irradiated with a KrF excimer laser. The, films presented good emission properties to be exploited in light emitting devices and gas sensors based on luminescence quenching. The working principle of the MAPLE technique was used for the deposition of colloidal nanoparticles and nanorods, too. TiO2 colloidal nanoparticles (diameter: ∼10 nm) and nanorods (diameter: 5 nm; length: 50 nm) were diluted in deionised water (0.02 wt %) and toluene (0.016 wt %) respectively. The deposited nanostructures preserved dimensions and structural properties of the starting particles and the films showed very interesting electrical responses when exposed to oxidizing gases for sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.