Abstract

Higher order loop constraints play a key role in the local mobility, singularity and dynamic analysis of closed loop linkages. Recently, closed forms of higher order kinematic constraints have been achieved with nested Lie product in screw coordinates, and are purely algebraic operations. However, the complexity of expressions makes the higher order analysis complicated and highly reliant on computer implementations. In this paper matrix expressions of first and second-order kinematic constraints, i.e. involving the Jacobian and Hessian matrix, are formulated explicitly for single-loop linkages in terms of screw coordinates. For overconstrained linkages, which possess self-stress, the first- and second-order constraints are reduced to a set of quadratic forms. The test for the order of mobility relies on solutions of higher order constraints. Second-order mobility analysis boils down to testing the property of coefficient matrix of the quadratic forms (i.e. the Hessian) rather than to solving them. Thus, the second-order analysis is simplified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.