Abstract

The canine mammary tumor model is more suitable for studying human breast cancer, and the safety concentrations of matrine and the biotin-labeled matrine probe were determined in canine primary mammary epithelial cells, and then selected canine mammary tumor cell lines CHMm and CHMp were incubated with matrine, and cell viability was detected by CCK-8. The biotin-labeled matrine probe was used to pull-down the targets of matrine in canine mammary tumor cells, and the targets were screened in combination with activity-based protein profiling (ABPP) and Genecards database, and verified by qPCR and western blot. The results showed that the maximum non-cytotoxic concentrations of matrine and biotin-labeled matrine probe in canine primary mammary epithelial cells were 250 μg/mL and 500 μg/mL, respectively. Matrine and biotin-labeled matrine probe had a proliferation inhibitory effect time-dependently on CHMm and CHMp cells within a safe concentration range, and induced autophagy in cells. Then BTF3 targets were obtained by applying ABPP and Genecards screening. Cellular thermal shift assay (CETSA) findings indicated that matrine could increase the heat stability of BTF3 protein. Pull-down employing biotin-labeled matrine probe with CHMm and CHMp cell lysates revealed that BTF3 protein was detected in the biotin-labeled matrine probe group and that BTF3 protein was significantly decreased by the addition of matrine. The qPCR and western blot findings of CHMm and CHMp cells treated with matrine revealed that matrine decreased the expression of the BTF3 gene and protein with the extension of the action time, and the impact was more substantial at the protein level, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.