Abstract
To investigate the effect of matrine on proliferation of vascular smooth muscle cells (VSMCs) and elucidate the underlying mechanisms. Rat aortic VSMCs were cultured in medium supplemented with 10% fetal bovine serum and treated with various concentrations (0, 5, 10, 15, and 20 mg/L) of matrine for 72 h. VSMCs proliferation and cell cycle profiling were assessed using a methylene blue incorporation assay and flow cytometry, respectively. The underlying protein signaling mechanisms were determined using Western blot analysis of the expression levels of cell cycle regulatory genes, including p53, p21, p27, cyclin D1, cyclin E, cyclin-dependent kinase 2 and 4 (cdk2, cdk4), and phosphorylated Rb. The involvement of p21 and p27 pathways was further determined using small interfering RNA (siRNA) knockdown. Matrine inhibited VSMC proliferation in a dose-dependent manner by promoting G(1) arrest. The G(1) arrest was accompanied by up-regulation of p53 and p21 protein levels, and down-regulation of cyclin D1/cdk4, cyclin E/cdk2 and phosphorylated Rb protein levels. Matrine did not affect p27 expression. Furthermore, the anti-proliferative effect of matrine was abolished by silencing of p21, but not by silencing of p27. Our data indicate that matrine has an inhibitory effect on VSMC proliferation via up-regulation of the p53/p21 signaling pathway and modulation of other cell cycle regulatory genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.