Abstract
IntroductionDeletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3. To understand the mechanisms underlying these properties, we determined the effects of MATN3 protein on the expression of several key anabolic and catabolic genes involved in chondrocyte homeostasis, and the dependence of such regulation on the anti-inflammatory cytokine: IL-1 receptor antagonist (IL-1Ra).MethodsThe effects of recombinant human (rh) MATN3 protein were examined in C28/I2 immortalized human chondrocytes, primary human chondrocytes (PHCs), and primary mouse chondrocytes (PMCs). Messenger RNA levels of IL-1Ra, COL2A1, ACAN, MMP-13, and ADAMTS-4 and -5 were determined using real-time RT-PCR. Knocking down IL-1Ra was achieved by siRNA gene silencing. IL-1Ra protein levels were quantified by ELISA and the Bio-Plex Suspension Array System. COL2A1 protein level was quantified using Western blot analysis. Statistic analysis was done using the two-tailed t-test or one-way ANOVA.ResultsrhMATN3 protein induced gene expression of IL-1Ra in C28/I2 cells, PHCs, and PMCs in a dose- and time-dependent manner. Treatment of C28/I2 cells and PHCs with MATN3 protein stimulated gene expression of COL2A1 and ACAN. Conversely, mRNA levels of COL2A1 and ACAN were decreased in MATN3 KO mice. MATN3 protein treatment inhibited IL-1β-induced MMP-13, ADAMTS-4 and ADAMTS-5 in C28/I2 cells and PHCs. Knocking down IL-1Ra abolished the MATN3-mediated stimulation of COL2A1 and ACAN and inhibition of ADAMTS-5, but had no effect on MATN3 inhibition of MMP-13 mRNA.ConclusionOur findings point to a novel regulatory role of MATN3 in cartilage homeostasis due to its capacity to induce IL-1Ra, to upregulate gene expression of the major cartilage matrix components, and to downregulate the expression of OA-associated matrix-degrading proteinases in chondrocytes. The chondroprotective properties of endogenous MATN3 depend partly on its induction of IL-1Ra. Our findings raise a possibility to use rhMATN3 protein for anti-inflammatory and chondroprotective therapy.
Highlights
Deletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3
To determine whether MATN3 affects IL-1 receptor antagonist (IL-1Ra) synthesis, we treated immortalized human C28/ I2 chondrocytes with rhMATN3 protein
We observed an increase of IL-1Ra mRNA levels in primary mouse chondrocyte (PMC) treated with rhMATN3 protein (Figure 1B)
Summary
Deletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3. Matrilin-3 (MATN3) is one of the four members of the matrilin family of noncollagenous oligomeric ECM proteins [1,2,3,4]. As an extracellular matrix (ECM) protein, MATN3 was thought to play a major structural role in forming a filamentous matrix network by interacting with collagen fibrils, multiple proteoglycans, and other glycoproteins [5]. Mutations in human MATN3 are associated with a variety of skeletal diseases including multiple epiphyseal dysplasia (MED), spondylo-epi-metaphyseal dysplasia (SEMD), and osteoarthritis (OA) [6,7,8,9], underscoring its importance in cartilage development and homeostasis. MATN3 gene expression is increased in articular cartilage tissues from OA patients [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.