Abstract

It is well known that every monic polynomial of degree n with coefficients in a field Φ is the characteristic polynomial of some n × n matrix A with elements in in Φ . However, it is clear that this result is an extremely weak one, and that it should be possible to impose considerable restrictions upon the matrix A. In this note we prove two results in this direction. In section 2, we show that it is possible to prescribe all but one of the diagonal elements of A. This result was first proved by Mirsky (2) when the ground field Φ is the field of complex numbers. In section 3, we see that we can require A to have any prescribed non-derogatory n–l × n–1 matrix in the top left-hand corner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.