Abstract

Amorphous ferromagnetic microwires are quite promising for use in various biomedical fields. A microwire in a biocompatible shell can be introduced into soft tissues or into blood vessels to maintain the biofunctioning of magnetic nanoparticles or stem cells with magnetic markers circulating in the blood. The magnetic fields created by the lattices of microwires are characterized by strong spatial gradients and can change over time in a specified manner. Such fields are necessary for the development of various magnetophoretic analytical chips for controlling the kinetics of cells and also for controlled drug delivery. A system of diametrically magnetized microwires is suggested in this paper, which possesses an energy minimum necessary for the stable capture of diamagnetic cells. The suggested dipole system is also promising for the accelerated diffusion transfer of magnetic nanoparticles, which are located in a liquid carrier, due to a gradient magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.