Abstract
Synthetic graft infection is a rare but extremely serious complication of aortic reconstruction procedures, with morbidity-mortality rates as high as 60 %. Some of the proteins (albumin, gelatin, collagen) used to coat polyester graft materials can establish ionic bonds with antibiotics or can capture antiseptics such as triclosan or ionic silver in their matrices. These active substances are then released from the graft, at varying rates, during the coating degradation that takes place during the weeks following polyester graft implantation in living tissues. Rifampin-bonded prostheses have proved effective against S. aureus and S. epidermidis in several canine models of synthetic aortic graft infection. Rifampin-bonded grafts have also been used successfully in patients with synthetic aortic graft infection by low-virulence bacteria. However, their effectiveness may be limited by the diverse and changing ecology of synthetic aortic graft infections, with an increasing prevalence of multidrug-resistant bacteria and polymicrobial infections. These include species that are naturally, or are likely to become, resistant to rifampin. We evaluated silver-ion-bonded prostheses in this setting but observed a disappointingly high mid-term rate of recurrent infections. Over the past few years we have been involved in the development of polyester vascular prostheses functionalized with a hydroxypropyl-β-cyclodextrin polymeric matrix that can capture and elute several therapeutic agents. The results are promising, as these prostheses enable the sustained release of various antibiotics in amounts several times their minimum inhibitory concentrations. This provides a unique opportunity to functionalize materials for aortic graft reconstruction, based on epidemiological data or individual bacteriological findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.