Abstract

The mass configuration of the buoyancy-driven underwater glider is decomposed and defined. The coupling between the glider body and its internal masses is addressed using the energy law. A glider motion model is established, and the corresponding simulation program is derived using MATLAB. The characteristics of the glider motion are explored using this program. The simulation results show that the basic characteristic of a buoyancy-driven underwater glider is the periodic alternation of downward and upward motions. The glider’s spiral motion can be applied to missions in restricted regions. The glider’s horizontal velocity, gliding depth and its motion radius in spiral motion can be changed to meet different application purposes by using different glider parameter designs. The simulation also shows that the model is appropriate and the program has strong simulation functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.