Abstract

Population manipulations such as translocation are becoming increasingly important tools in the management of rare and declining species. Evaluating the effectiveness of such manipulations requires comprehensive monitoring of population processes, including dispersal, survivorship, and reproduction. We investigated the mating system of a translocated population of gopher tortoises ( Gopherus polyphemus) established through multiple releases, which occurred primarily during 1987–1994. During 2006–2007, we sampled and genotyped 27 candidate males (candidate sires), 34 candidate females (candidate dams), and 121 offspring from 19 clutches at five polymorphic microsatellite loci to determine the relative frequency of multiple paternity and to estimate individual reproductive success. Multiple paternity was detected in 57% of clutches genotyped, and females of single-sire clutches and females of multiple-sire clutches were of similar size. Reproductive success varied among male tortoises, and successful sires were significantly larger than males to which no offspring were attributed. Among successful sires, previously established males sired a disproportionate number of the offspring sampled, despite being significantly smaller than subsequently released males. The high variance in individual reproductive success and the apparent reproductive advantage associated with prior residence observed in this gopher tortoise population has important implications for the design of future translocation projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call