Abstract

In fission-fusion societies, group size and composition change dynamically, reflecting social preferences and pressures. Most notably during reproduction, intersexual group dynamics reflect a balance between female choice for optimal mates and male competition for mating access. In systems where males and females remain in their natal area for life (bisexual philopatry), females can reduce the risk of incest by avoiding mating or associating with male kin. Shark Bay bottlenose dolphins (Tursiops aduncus) live in fission-fusion societies that enable them to exercise age, sex, and kin association biases. To determine how the balance between female choice and male competition is achieved, we examined adult female association with juvenile and adult males, including sons during female receptive periods, using 30 years of longitudinal data. Adult females demonstrated an increase in adult male association just prior to known conceptions, while juvenile male association consistently remained low. A decline in male association post-conception suggests that one or both sexes detect pregnancy early on. When we examined female association with juvenile and adult sons, a distinct pattern emerged. Adult females preferentially associated with sons compared to non-sons of the same age class post-weaning. Strikingly, females rarely associated with their adult sons when cycling. Our results suggest that (1) adult males either out-compete juvenile males in gaining access to fertile females or females prefer adult to juvenile males and (2) females mitigate the risk of close inbreeding by reducing association with sons when cycling. No study has investigated behavioral strategies for reducing close inbreeding in bisexually philopatric, fluid mammal societies outside of humans. Using over 30 years of longitudinal data, we document how association dynamics change with female reproductive state. Post-weaning, mothers and sons associate, but almost never during conceptive periods. Adult male–female association is frequent during estrous, with a sharp decline after conception. Our study provides evidence for long-term kin recognition and detection of both estrous and early pregnancy among wild bottlenose dolphins. These findings have implications for the evolution of bisexual philopatry, fission-fusion dynamics, and infanticide—or lack thereof—in mammals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call