Abstract
In biology, economics, and politics, distributive power is the key for understanding asymmetrical relationships and it can be obtained by force (dominance) or trading (leverage). Whenever males cannot use force, they largely depend on females for breeding opportunities and the balance of power tilts in favour of females. Thus, males are expected not only to compete within their sex-class but also to exchange services with the opposite sex. Does this mating market, described for humans and apes, apply also to prosimians, the most ancestral primate group? To answer the question, we studied a scent-oriented and gregarious lemur, Propithecus verreauxi (sifaka), showing female dominance, promiscuous mating, and seasonal breeding. We collected 57 copulations involving 8 males and 4 females in the wild (Berenty Reserve, South Madagascar), and data (all occurrences) on grooming, aggressions, and marking behaviour. We performed the analyses via exact Spearman and matrix correlations. Male mating priority rank correlated with the frequency of male countermarking over female scents but not with the proportion of fights won by males over females. Thus, males competed in an olfactory tournament more than in an arena of aggressive encounters. The copulation frequency correlated neither with the proportion of fights won by males nor with the frequency of male countermarking on female scents. Male-to-female grooming correlated with female-to-male grooming only during premating. Instead, in the mating period male-to-female grooming correlated with the copulation frequency. In short, the biological market underwent seasonal fluctuations, since males bargained grooming for sex in the mating days and grooming for itself in the premating period. Top scent-releasers gained mating priority (they mated first) and top groomers ensured a higher number of renewed copulations (they mated more). In conclusion, males maximize their reproduction probability by adopting a double tactic and by following market fluctuations.
Highlights
In biology, as well as in economics and politics, power is a key concept for understanding asymmetrical dyadic relationships [1]
The typical game theory approach includes only two players and, this is changing within economics as well as biology, the classical models do not take into account partner choice [4]
Whenever individuals cannot forcibly appropriate valuable resources without the consent of the owner, they should compete for partners and negotiate about resource distribution in biological markets [4]
Summary
As well as in economics and politics, power is a key concept for understanding asymmetrical dyadic relationships [1]. An individual has leverage over another when that individual possesses something that the other needs but cannot acquire through coercion [3]. In this case, trading becomes essential for mutually beneficial interactions within social groups, both in economical and biological markets [4]. The typical game theory approach includes only two players and, this is changing within economics as well as biology, the classical models do not take into account partner choice [4]. Different group members can offer different kinds of commodities in exchange for alternative ones that they do not currently possess [4]. Competition acts as the driving force within the same trader class (including all members offering the same kind of commodity) while cooperation can occur between different trader classes [4,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.