Abstract

AbstractMathematical modelling of fluidized bed reactors. Among the many fluidized bed models to be found in the literature, the two‐phase model originally proposed by May has proved most suitable for accommodation of recent advances in flow mechanics: this model resolves the gas/solids fluidized bed into a bubble phase and a suspension phase surrounding the bubbles. Its limitation to slow reactions is a disadvantage. On the basis of the analogy between fluidized beds and gas/liquid systems, a general two‐phase model that is valid for fast reactions has therefore been developed and its validity is confirmed by comparison with the experimental results obtained by other authors. The model describes mass transfer across the phase interface with the aid of the film theory known from gas/liquid reactor technology, and the reaction occurring in the suspension phase as a pseudo‐homogeneous reaction. Since the dependence of the performance of fluidized bed reactors upon geometry is accounted for, the model can also be used for scale‐up calculations. Its use is illustrated with the aid of design diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.