Abstract

BackgroundThe aim of this study was to develop a mathematically valid method of assessing fracture resistance of roots. The model developed used mesial roots of lower molars instrumented using stainless steel hand files (SS) and two rotary nickel-titanium (NiTi) systems.MethodsEighty human lower molars were selected and randomly divided into four groups (n = 20). After instrumentation, the root canals were obturated using thermoplasticized gutta percha. The roots were covered with a simulated periodontal ligament and mounted vertically in autopolymerizing acrylic in PVC tubes. Using a universal testing machine, the force to fracture (N) was applied and the maximum load (FL) was recorded. Remaining dentine volume was calculated and the fracture resistance (FR) was recorded. The data were analyzed using SPSS version 22 with P < .05.ResultsThere were no significant differences among the instrumentation methods for FL but in FR the roots instrumented using rotary NiTi showed significantly lower values than control groups and SS files (P < 0.001).ConclusionsConsidering the effect of root length, volume of the root, and volume of the instrumented canal as well as the maximum failure load may be a more objective method of reporting fracture resistance of roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.