Abstract
A mathematical theory of learning is presented in a unified manner to be applicable to various architectures of networks. The theory is based on parameter modification driven by a time series of input signals generated from a stochastic information source. A network modifies its behavior such that it adapts to the environmental information structure. The theory is self-organization of a neural system. A typical discrete structure is automatically formed through continuous parameter modification by self-organization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.