Abstract

This paper develops a new mathematical framework for denoising in blind two-dimensional (2D) super-resolution upon using the atomic norm. The framework denoises a signal that consists of a weighted sum of an unknown number of time-delayed and frequency-shifted unknown waveforms from its noisy measurements. Moreover, the framework also provides an approach for estimating the unknown parameters in the signal. We prove that when the number of the observed samples satisfies certain lower bound that is a function of the system parameters, we can estimate the noise-free signal, with very high accuracy, upon solving a regularized least-squares atomic norm minimization problem. We derive the theoretical mean-squared error of the estimator, and we show that it depends on the noise variance, the number of unknown waveforms, the number of samples, and the dimension of the low-dimensional space where the unknown waveforms lie. Finally, we verify the theoretical findings of the paper by using extensive simulation experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.