Abstract
In the context of handwritten mathematical expressions recognition, a first step consist on grouping strokes (segmentation) to form symbol hypotheses: groups of strokes that might represent a symbol. Then, the symbol recognition step needs to cope with the identification of wrong segmented symbols (false hypotheses). However, previous works on symbol recognition consider only correctly segmented symbols. In this work, we focus on the problem of mathematical symbol recognition where false hypotheses need to be identified. We extract symbol hypotheses from complete handwritten mathematical expressions and train artificial neural networks to perform both symbol classification of true hypotheses and rejection of false hypotheses. We propose a new shape context-based symbol descriptor: fuzzy shape context. Evaluation is performed on a publicly available dataset that contains 101 symbol classes. Results show that the fuzzy shape context version outperforms the original shape context. Best recognition and false acceptance rates were obtained using a combination of shape contexts and online features: 86% and 17.5% respectively. As false rejection rate, we obtained 8.6% using only online features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.