Abstract

Electrokinetic transport of fluids through microchannel by micropumping and microperistaltic pumping has much interest for many engineering, medical, and industrial applications. Motivated in part by the need of mathematical model to study the electrokinetic transport by peristaltic pumping, an analytical approach is presented. A non-integral number of wave propagation is considered for transportation of fluid bolus along the channel length. Debye-Huckel linearization is employed to find out the potential function. A non-dimensional analysis is employed to simplify the governing equations. Low Reynolds number and large wavelength approximations are taken into account. The effects of characteristic electrical double layer (EDL) thickness and maximum electroosmotic velocity on pumping characteristics are discussed by computational results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.