Abstract

A new two-group deterministic model for Chlamydia trachomatis, which stratifies the entire population based on risk of acquiring or transmitting infection, is designed and analyzed to gain insight into its transmission dynamics. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium (DFE) co-exists with one or more stable endemic equilibria when the associated reproduction number is less than unity. Unlike in some of the earlier modeling studies on Chlamydia transmission dynamics in a population, this study shows that the backward bifurcation phenomenon persists even if individuals who recovered from Chlamydia infection do not get re-infected. However, it is shown that the phenomenon can be removed if all the susceptible individuals are equally likely to acquire infection (i.e., for the case where the susceptible male and female populations are not stratified according to risk of acquiring infection). In such a case, the DFE of the resulting (reduced) model is globally-asymptotically stable when the associated reproduction number is less than unity and no re-infection of recovered individuals occurs. Thus, this study shows that stratifying the two-sex Chlamydia transmission model, presented in [1], according to the risk of acquiring or transmitting infection induces the phenomenon of backward bifurcation regardless of whether or not the re-infection of recovered individuals occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.