Abstract

In this paper we continue our study of coarse-graining schemes for stochastic many-body microscopic models started in Katsoulakis et al. [M. Katsoulakis, A. Majda, D. Vlachos, Coarse-grained stochastic processes for microscopic lattice systems, Proc. Natl. Acad. Sci. 100 (2003) 782–782, M.A. Katsoulakis, L. Rey-Bellet, P. Plecháč, D. Tsagkarogiannis, Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems, M2AN Math. Model. Numer. Anal., in press], focusing on equilibrium stochastic lattice systems. Using cluster expansion techniques we expand the exact coarse-grained Hamiltonian around a first approximation and derive higher accuracy schemes by including more terms in the expansion. The accuracy of the coarse-graining schemes is measured in terms of information loss, i.e., relative entropy, between the exact and approximate coarse-grained Gibbs measures. We test the effectiveness of our schemes in systems with competing short- and long-range interactions, using an analytically solvable model as a computational benchmark. Furthermore, the cluster expansion in Katsoulakis et al. [M.A. Katsoulakis, L. Rey-Bellet, P. Plecháč, D. Tsagkarogiannis, Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems, M2AN Math. Model. Numer. Anal., in press] yields sharp a posteriori error estimates for the coarse-grained approximations that can be computed on-the-fly during the simulation. Based on these estimates we develop a numerical strategy to assess the quality of the coarse-graining and suitably refine or coarsen the simulations. We demonstrate the use of this diagnostic tool in the numerical calculation of phase diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.