Abstract

A flow field mathematical model of the molten steel in a 150 t bottom blowing gas ladle has been established. The ladle blowing argon process was simulated by mixture multiphase model. The flow of the liquid steel and the phenomenon of slag entrainment on the surface of the liquid steel in bottom blowing gas ladle with immersed cylinder were studied. On the basis of the effects of the gas flow rate and the way of blowing on the flow state of the top slag and mixing of molten steel, the critical gas flow rate with the immersed cylinder was determined. The results show that the flow distribution of the liquid steel tends to be uniform, the liquid surface velocity decreases, the critical gas flow of slag entrainment increases and the mixing time is shortened in the ladle when an immersed cylinder is applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call