Abstract
Processes of origination and propagation of crown fires are studied theoretically. The forest is treated as multiphase multicomponent porous reacting medium. The Reynolds equations for a turbulent flow are solved numerically taking chemical reactions into account. The method of control volume is used for obtaining the discrete analog. As a result of numerical computations, the distributions of velocity fields, temperature, oxygen concentration, volatile pyrolysis and combustion products, and volume fractions of the condensed phase at different instants are obtained. The model makes it possible to obtain dynamic contours of propagation of crown fires, which depend on the properties and states of forest canopy (reserves and type of combustible materials, moisture content, inhomogeneities in woodland, velocity and direction of wind, etc.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.