Abstract
Submitted is a theoretical study of mass transfer processes in polydisperse porous media in the presence of chemical reactions. Kinetic regime of methane pyrolysis in a porous carbon skeleton considering external and internal diffusion resistances for different initial distributions of particles forming the porous medium is investigated. Derived is a general analytical expression describing the influence of the inner reaction surface variation on the degree of the pore filling for an arbitrary initial particle size distribution. Expressions defining the time of pores filling by pyrocarbon based on approximate and exact solutions of the equation for the probability density function (PDF) of particle size distribution are received. Dependence of pore filling time on effective diffusion coefficient and initial particle size distribution using both solutions for PDF-equation is compared. It is shown, that the dominant factor influencing the pore filling time is the dispersion of particle size distribution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.