Abstract

The deformation and compaction of loamy sandy soddy-podzolic soils under linear dynamic changes in the compressive stresses and in the course of the soil creeping were studied in field experiments. The rheological properties of these soils occurring in the viscoelastic state were described by a first-order differential equation relating the compressive stresses, the rates of their changes, and the velocities of the relative vertical compressive deformation. Regression equations were derived for the viscoelastic properties of the studied soil as functions of its density, moisture, and linear compaction velocity. Methods were proposed for the calculation of indices of the stress-strain state and the compaction of soils under specified conditions of changes in their compressive stresses with time and in the course of the soil creeping after the initial linear increase in load. Corresponding computer programs were developed. The effect of the main factors due to the linear increase in the compressive loads and in the course of the soil creeping on the rheological properties, the stress-strain state, and the density of soils was quantitatively estimated. The calculation showed that the values of the soil deformation and the density under compressive stresses lower than the ultimate strength were stabilized with time, and the properties of the viscoelastic soil approached elastic ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.