Abstract

In the minimizing-deep-coalescences (MDC) approach for species tree inference, a tree that has the minimal deep coalescence cost for reconciling a collection of gene trees is taken as an estimate of the species tree topology. The MDC method possesses the desirable Pareto property, and in practice it is quite accurate and computationally efficient. Here, in order to better understand the MDC method, we investigate some properties of the deep coalescence cost. We prove that the unit neighborhood of either a rooted species tree or a rooted gene tree under the deep coalescence cost is exactly the same as the tree's unit neighborhood under the rooted nearest-neighbor interchange (NNI) distance. Next, for a fixed species tree, we obtain the maximum deep coalescence cost across all gene trees as well as the number of gene trees that achieve the maximum cost. We also study corresponding problems for a fixed gene tree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.