Abstract
In this paper an inverse optimal control problem in the form of a mathematical program with complementarity constraints (MPCC) is considered and numerical experiences are discussed. The inverse optimal control problem arises in the context of human navigation where the body is modelled as a dynamical system and it is assumed that the motions are optimally controlled with respect to an unknown cost function. The goal of the inversion is now to find a cost function within a given parametrized family of candidate cost functions such that the corresponding optimal motion minimizes the deviation from given data. MPCCs are known to be a challenging class of optimization problems typically violating all standard constraint qualifications (CQs). We show that under certain assumptions the resulting MPCC fulfills CQs for MPCCs being the basis for theory on MPCC optimality conditions and consequently for numerical solution techniques. Finally, numerical results are presented for the discretized inverse optimal control problem of locomotion using different solution techniques based on relaxation and lifting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.