Abstract
In group decision making (GDM) with intuitionistic fuzzy preference relations (IFPRs), the consistency and consensus are two key issues. This paper develops a novel method for checking and improving the consistency of individual IFPRs and the consensus among experts. To measure the consistency degree of IFPRs, a consistency index is introduced and then an acceptable consistency is defined. For an IFPR with unacceptable consistency, a mathematical programming approach is developed to improve its consistency. To evaluate the consensus degree among experts, a consensus measure is presented by the proximity degree between one expert and other experts. When several individual IFPRs are unacceptable consistent or consensus is unacceptable, a goal program is built to improve the consistency and consensus simultaneously. By the consistency and proximity degrees of individual IFPRs, experts’ objective weights are determined. Combining the experts’ subjective weights, the experts’ comprehensive weights are derived. Then, an intuitionistic fuzzy geometric weighted mean (IFGWM) operator is proposed to integrate individual IFPRs into a collective one. Moreover, an attractive property is proved that the collective IFPR is acceptable consistent if all individual IFPRs are acceptable consistent. Two examples are provided to illustrate the validity of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.